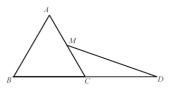
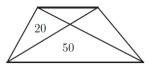
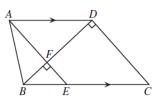

Math 8 Honors 5.5 Proportional Lengths and Areas of Triangles

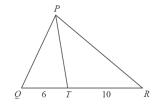
1. The area of each polygons is 120cm². Find the area of the shaded region.

2. In \triangle PQR, a line segment is drawn from point P to point on side QR. If \triangle PQS and \triangle PRS have the same area, which of the following statements must be true?

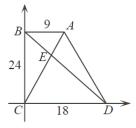

a)PQ = PR b)PQ = PS c)RQ = PS d)SQ = SR e)PQ = QR

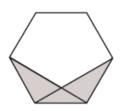

3. \triangle ABC has side lengths of 6, 8, 10, as shown. Each of the sides of \triangle ABC is increased by 50%, forming a new triangle \triangle DEF. What is the area of \triangle DEF?


4. Equilateral $\triangle ABC$ has side length 2, M is the midpoint of \overline{AC} , and C is the midpoint of \overline{BD} . What is the area of $\triangle CDM$?

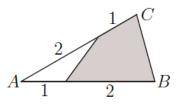

5. In the trapezoid below, lines that look parallel are parallel. The trapezoid is divided into four regions by its diagonals. The areas of two of these regions are 50cm² and 20cm², indicated. What is the area of the entire trapezoid?

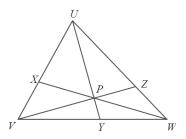
6. In trapezoid ABCD, AD is parallel to BC. Also, BD is perpendicular to DC. The point F is chosen on line BD so that AF is perpendicular to BD. AF is extended to meet BC at point E. If AB=41, AD=50 and BF=9, what is the area of quadrilateral FECD?

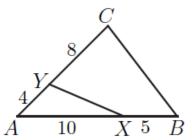

7. In ΔPQR , Point *T* is on side *QR* such that *QT* = 6 and *TR* = 10. Explain why the ratio of the area of ΔPQT to the area of ΔPTR is 3:5.

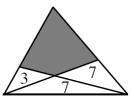

- 8. In the diagram, $\angle ABC = \angle BDC = 90^{\circ}$. Also, AB = 9, BC=24, and CD=18. The diagonals AC and BD of quadrilateral ABCD meet at E.
 - i) Determine the area of quadrilateral ABCD

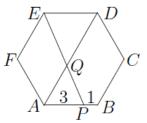
iii) Determine the area of triangle DEC.

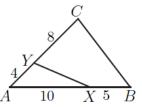

- ii) Show that the ratio of side DE: EB is 2:1.
- Iv) Determine the area of triangle DAE.

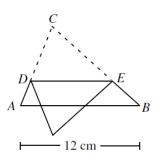

9. The figure below is a regular hexagon with area 1. Express the area of the shaded region as a common fraction.

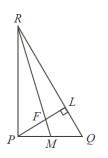

10. What fraction of $\triangle ABC$ is shaded?

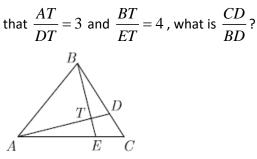

11. In the diagram, points "X", "Y", and "Z" are on the sides of ΔUVW , as shown. Line segments UY, VZ and WX intersect at P. Point Y is on VW such that the ratio of sides VY : YW is equal to 4 : 3. If ΔPYW has an area of 30 and ΔPZW has an area of 35, determine the area of ΔUXP .

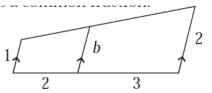

12. In the diagram, AX=10, XB=5, AY=4, and YC=8. What is the ratio of the area of ΔAXY to the area of ΔABC ? Express your answer as a common fraction.

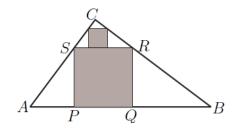

13. A triangle is partitioned into three triangles and a quadrilateral by drawing two lines from vertices to their opposite sides. The areas of the three triangles are 3, 7, and 7, as shown. What is the area of the shaded quadrilateral?

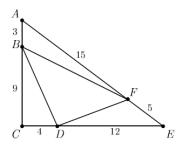

14. The figure *ABCDEF* below is a regular hexagon, and point P lies on side AB, with *AP* = 3cm and *PB* = 1cm. Line *PE* meets *AD* at *Q*. What is the ratio of the area of quadrilateral *AQEF* to the area of hexagon *ABCDEF*? Express your answer as a common fraction.

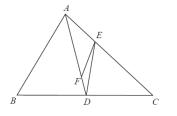

15. In the diagram below, AX = 10, XB = 5, AY = 4, and YC = 8. What is the ratio of the area of ΔAXY to the area of ΔABC ? Express your answer as a common fraction.


16. The base of a triangular piece of paper ABC is 12cm long. The paper is folded down over the base, with crease DE parallel to the base of the paper. The area of the triangle that projects below the base is 16% that of the area of the triangle ABC. What is the length of DE, in cm.


17. In the diagram, \triangle PQR is right angled at P and has PQ=2 and $PR = 2\sqrt{3}$ Altitude PL intersects median RM at F. What is the length of PF?


18. Similar Triangles In $\triangle ABC$ points D and E lie on \overline{BC} and \overline{AC} , respectively. If \overline{AD} and \overline{BE} intersect at T so


19. Lines that look parallel in the picture are parallel. Express "b", the length of the middle line segment as a common fraction.


20. Triangle ABC is right-angled at C, with AC = 3 and BC = 4. The large shaded square PQRS in scribed in ΔABC with P and Q on AB. The small shaded square is inscribed in ΔSRC , with one side along SR. What is the ratio of the side of the small shaded square to the side of the large shaded square? Express your answer as a common fraction.

21. In right triangle ACE, we have AC = 12, CE = 16, and EA = 20. Points *B*, *D*, and *F* are located on \overline{AC} , \overline{CE} , and \overline{EA} , respectively, so that AB=3, CD=4, and EF=5. What is the ratio of the area of ΔBDF to that of ΔACE ?

22. In $\triangle ABC$, point *D* is the midpoint of side *BC*. Point *E* is on *AC* such that the ratio of sides *AE* : *EC* is 1:2. Point *F* is on AD such that the ratio of sides *AF* : *FD* is 3 : 1. If the area of $\triangle DEF$ is 17, determine the area of $\triangle ABC$.

